
© 2000 Ubicom, Inc. All rights reserved. - 1 - www.ubicom.com

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.

Application Note 39
April 2001

Dual UART Virtual Peripheral
Implementation

1.0 Introduction
The Dual UART Virtual Peripheral uses the SX communi-
cations controller to provide asynchronous data commu-
nication through two RS-232 interfaces. The Virtual
Peripheral has been developed using the SX Evaluation
Board and has been tested using the SX-Key interface
from Parallax Inc. and the SXIDE integrated development
environment from Advanced Transdata Inc.
Unlike other MCUs that add functions in the form of addi-
tional silicon, the SX Series uses its fast execution rate to
emulate peripheral functions in software modules, called
Virtual Peripherals. On-chip hardware peripherals are
only provided for functions that cannot be performed effi-
ciently in software, such as timers and analog compara-
tors.

1.1 Program Description
The Dual UART Virtual Peripheral implements two UART
interfaces that can run at independent baud rates.
Because both UARTs operate simultaneously, data trans-
fer is much more efficient than implementations that only
handle one channel at a time.
The Dual UART Virtual Peripheral is designed to operate
in a multithreaded environment driven by the real-time
clock/counter (RTCC). Whenever an RTCC interrupt
occurs, an interrupt service routine (ISR) is called which
contains a multitasker for allocating CPU bandwidth
among any Virtual Peripherals which require interrupt
service. Each task is called a thread, and the Dual UART
Virtual Peripheral is assigned to isrThread1. In this
example, the multitasker implements 16 slots for calling
threads, and four of these slots are occupied by calls to
isrThread1. Because the Dual UART Virtual Peripheral
only receives service on every fourth interrupt, most of
the CPU bandwidth is available for use by other Virtual
Peripherals.

Before sending a character, software must check the
transmit flag for the UART to be used. If the flag is clear,
a character can be sent by setting the flag and calling the
sendbyte routine. The Virtual Peripheral also features
the capability to send strings.
Calls to isrThread1 are used to service both UARTs.
The program can be modified to include one UART in
isrThread1 and the other in isrThread2. In this case,
the jump table for the multitasker must be modified to call
isrThread2 on every fourth interrupt, like isrThread1.

© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

1.2 Interrupt Service Routine Flowchart

Figure 1-1. Interrupt Service Routine Flowchart

Start

1

Yes

No

Not 0

0

1

0

Rs232Tx1Flag

Decrement
Tx1Divide

Is Tx1Divide 0

Transmit 1 bit of
 data on UART1

UART1 - Any
 bit to be

 Received

Receive Bit on
 UART1

0
Rs232Tx2Flag

Decrement
Tx2Divide

Is Tx2Divide 0

1

Transmit 1 bit of
data on UART2

UART2 - Any
bit to be
Received

Receive Bit on
UART2

END

No

Yes

1

© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

Dual UART Virtual Peripheral Implementation AN39

2.0 Source Code Sections
The source code for the UART Virtual Peripheral is
divided into four sections:
• Equates Section
• Bank Section
• Initialization Section
• Interrupt Section
When integrated into an application, each section of the
source code is inserted at an appropriate location in the
main body of the application’s source code.

2.1 Equates Section
The equates section provides the values of UARTDivide
and UARTStDelay and the port pin declarations.
The values of the constants are:
UARTfs = 230400

Num = 4

Int Period = 217

UARTDivide1 = UARTfs/(UARTbaud1 * Num)

UARTStDelay1 = UARTDivide1 + (UARTDivide1/2)+1

UARTDivide2 = UARTfs/(UARTbaud2 * Num)

UARTStDelay2 = UARTDivide2 + (UARTDivide2/2)+1

Num is the number of times the UART Virtual Peripheral
ISR is called by the multitasker during one rotation. The
multitasker rotates interrupt service among 16 slots, and
isrThread1 is called from four of these slots, so Num is 4
in this example. In other applications, Num might have a
different value. For example, if the interrupt frequency
were faster or the baud rate were slower, one slot might
be sufficient to service the Dual UART Virtual Peripheral
ISR.

The pins for sending and receiving data are defined in
this section. Port A and Port C are used for the external
interface.
The pins are configured as shown below:

The baud rates for each of the UARTs are specified by
using IFDEF statements. The baud rate is equal to the
number that represents it in the commented statement.
For example, if U1B1200 is uncommented, UART1 has a
baud rate of 1200 baud. Similarly, if U2B1920 is uncom-
mented, UART2 is configured for a baud rate of 19200
baud.

rs232Rxpin1 equ ra.2 ;UART1 receive input

rs232Txpin1 equ ra.3 ;UART1 transmit output

rs232Rxpin2 equ rc.7 ;UART2 receive input

rs232Txpin2 equ rc.6 ;UART2 transmit output

© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

2.2 Bank Section
This section describes the use of the banks in the Dual
UART Virtual Peripheral. Two banks are used, bank 1
and bank 2.

Different banks for rs232TxBank and MultiplexBank
are defined in bank 1 for clarity, and bank2 contains
rs232RxBank.

Org bank1_org

bank1 = $

rs232TxBank = $;UART Transmit bank

rs232Tx1high ds 1 ;High Byte to be transmitted

rs232Tx1low ds 1 ;Low Byte to be transmitted

rs232Tx1count ds 1 ;counter to keep track of the bits sent

rs232Tx1divide ds 1 ;xmit timing counter

rs232Tx1Byte ds 1 ;store the byte to be sent in this buffer

rs232Tx2high ds 1 ;High Byte to be transmitted

rs232Tx2low ds 1 ;Low Byte to be transmitted

rs232Tx2count ds 1 ;counter to keep track of the bits sent

rs232Tx2divide ds 1 ;xmit timing counter

rs232Tx2Byte ds 1 ;store the byte to be sent in this buffer

MultiplexBank = $;Multipler Bank

isrMultiplex ds 1 ;Used to jump between the Isr Threads when

; An Interrupt occurs

Org bank2_org

bank2 = $

rs232RxBank = $

rs232Rx1count ds 1 ;counter to keep track of the number of bits received

rs232Rx1divide ds 1 ;receive timing counter

rs232Rx1byte ds 1 ;buffer for incoming byte

rs232byte1 ds 1 ;Used by serial routines

rs232Rx2count ds 1 ;counter to keep track of the number of bits received

rs232Rx2divide ds 1 ;receive timing counter

rs232Rx2byte ds 1 ;buffer for incoming byte

rs232byte2 ds 1 ;used by serial routines

© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

Dual UART Virtual Peripheral Implementation AN39

2.3 Initialization Section
This section provides initialization for the UART Virtual
Peripheral. This has to be included with the initialization
of all other ports and registers, prior to entering the main
loop of the application.nitialization is required to send the
data at the desired baud rate. The value of UART1divide

specifies the number of times the interrupt has to be ser-
viced before a bit is transmitted. For example, at 9600
baud the value of UART1divide is 6, which means that a
bit is transmitted once for every six times isrThread1 is
called.

_bank rs232TxBank ;select rs232 bank

mov w,#UARTdivide1 ;load Txdivide with UART baud rate

mov rs232Txdivide1,w

mov w,#UARTdivide2 ;load Txdivide with UART baud rate

mov rs232Txdivide2,w

© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

2.4 Interrupt Section
The flow of the interrupt service routine is shown in Figure 1-1.
The ISR returns with a "retiw" value of -217 every 4.32 microseconds at an oscillator frequency of 50 MHz.
;***

org INTERRUPT_ORG ; First location in program memory.

;***

;***

;----------------------------------- Interrupt Service Routine -------------------------------

; Note: The interrupt code must always originate at address $0.

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 and an oscillator frequency of 50MHz, this

; code runs every 4.32us.

;***

org $0

interrupt ;3

;***

; Interrupt

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 and an oscillator frequency of 50MHz, this code runs

; every 4.32us.

;***

;***

;--VP:VP Multitasker--------------------------------

; Virtual Peripheral Multitasker : up to 16 individual threads, each running at the

; (interrupt rate/16). Change then below:

;Input variable(s): isrMultiplex: variable used to choose threads

;Output variable(s): None,executes the next thread

;Variable(s) affected: isrMultiplex

;Flag(s) affected: None

;Program Cycles: 9 cycles (turbo mode)

;***

 _bank Multiplexbank ;

 inc isrMultiplex ; toggle interrupt rate

 mov w,isrMultiplex ;

;***

; The code between the tableStart and tableEnd statements MUST be completely within the first

; half of a page. The routines it is jumping to must be in the same page as this table.

;***

 tableStart ; Start all tables with this macro

 jmp pc+w ;

 jmp isrThread1 ;

 jmp isrThread2 ;

 jmp isrThread3 ;

 jmp isrThread4 ;

 jmp isrThread1 ;

 jmp isrThread5 ;

 jmp isrThread6 ;

 jmp isrThread7 ;

 jmp isrThread1 ;

 jmp isrThread8 ;

 jmp isrThread9 ;

 jmp isrThread10 ;

 jmp isrThread1 ;

 jmp isrThread11 ;

© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

Dual UART Virtual Peripheral Implementation AN39

 jmp isrThread12 ;

 jmp isrThread13 ;

 tableEnd ; End all tables with this macro.

;***

;VP: VP Multitasker

; ISR TASKS

;***

isrThread1 ; Serviced at ISR rate/4

;***

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) These routines send

; and receive RS232 serial data, and are currently configured (though modifications can be

; made) for the popular "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

;

; The VP below has 2 UARTS implemented - UART1 & UART2. Both the UARTs can work at independent

; Baud Rates.

;

; RECEIVING: The rs232Rx1flag & rs232Rx2flag are set high whenever a valid byte of data has

; been received and it is the calling routine's responsibility to reset this flag once the

; incoming data has been collected.

;

; TRANSMITTING: The transmit routine requires the data to be inverted and loaded

; (rs232Txhigh+rs232Txlow) register pair (with the inverted 8 data bits stored in

; rs232Txhigh and rs232Txlow bit 7 set high to act as a start bit). Then the number of bits

; ready for transmission (10=1 start + 8 data + 1 stop) must be loaded into the rs232Txcount

; register. As soon as this latter is done, the transmit routine immediately begins sending

; the data. This routine has a varying execution rate and therefore should always be

; placed after any timing-critical virtual peripherals such as timers,

; adcs, pwms, etc.

; Note:The transmit and receive routines are independent and either may be removed for each

; of the UARTs. The initial "_bank rs232TxBank" & "_bank rs232RxBank" (common)

; instruction is kept for Transmit & Receive routines.

; Input variable(s): rs232Tx1Low (only high bit used), rs232Tx1High, rs232Tx1Count

; If rs232Tx1Flag SET, then transmit on UART1

; rs232Tx2Low (only high bit used), rs232Tx2High, rs232Tx2Count

; If rs232Tx2Flag SET, then transmit on UART2

; Output variable(s): rs232Rx1Flag, rs232Rx1byte

; rs232Rx2Flag, rs232Rx2byte

; Variable(s) affected: rs232Tx1divide, rs232Rx1divide, rs232Rx1count

; rs232Tx2divide, rs232Rx2divide, rs232Rx2count

; Flag(s) affected: rs232Tx1Flag, rs232Tx2Flag

; rs232Rx1Flag, rs232Rx1Flag

; Program cycles: 22 worst case for Tx, 23 worst case for Rx

; Variable Length? Yes.

;***

UART1

rs232Transmit

_bank rs232TxBank ;2 switch to serial register bank

sb rs232Tx1FLag ;1

jmp rs232Receive1 ;1

decsz rs232Tx1divide ;1 only execute the transmit routine

jmp rs232Receive1 ;1

mov w,#UARTDivide1 ;1 load UART baud rate (50MHz)

mov rs232Tx1divide,w ;1

test rs232Tx1count ;1 are we sending?

snz ;1

jmp rs232Receive1 ;1

© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

:txbit clc ;1 yes, ready stop bit

rr rs232Tx1high ;1 and shift to next bit

rr rs232Tx1low ;1

dec rs232Tx1count ;1 decrement bit counter

snb rs232Tx1low.6 ;1 output next bit

clrb rs232TxPin1 ;1

sb rs232Tx1low.6 ;1

setb rs232TxPin1 ;1

test rs232Tx1count ;1 are we sending?

snz ;1

clrb rs232Tx1Flag ;1,22

rs232Receive1

_bank rs232RxBank ;2

 sb rs232RxPin1 ;1 get current rx bit

 clc ;1

 snb rs232RxPin1 ;1

 stc ;1

test rs232Rx1count ;1 currently receiving byte?

sz ;1

jmp :rxbit ;1 if so, jump ahead

mov w,#9 ;1 in case start, ready 9 bits

sc ;1 skip ahead if not start bit

mov rs232Rx1count,w ;1 it is, so renew bit count

mov w,#UARTStDelay1 ;1 ready 1.5 bit periods (50MHz)

mov rs232Rx1divide,w ;1

:rxbit decsz rs232Rx1civide ;1 middle of next bit?

 jmp :rs232RxOut1 ;1

mov w,#UARTDivide1 ;1 yes, ready 1 bit period (50MHz)

mov rs232Rx1divide,w ;1

dec rs232Rx1count ;1 last bit?

sz ;1 if not

rr rs232Rx1byte ;1 then save bit

snz ;1 if so,

setb rs232Rx1Flag ;1,23 then set flag

:rs232RxOut1

UART2

_bank rs232TxBank ;2 switch to serial register bank

sb rs232Tx2flag ;1

jmp rs232Receive2 ;1

decsz rs232Tx2divide ;1 only execute the transmit routine

jmp rs232Receive2 ;1

mov w,#UARTDivide2 ;1 load UART baud rate (50MHz)

mov rs232Tx2divide,w ;1

test rs232Tx2count ;1 are we sending?

snz ;1

jmp rs232Receive2 ;1

:txbit clc ;1 yes, ready stop bit

rr rs232Tx2high ;1 and shift to next bit

rr rs232Tx2low ;1

dec rs232Tx2count ;1 decrement bit counter

snb rs232Tx2low.6 ;1 output next bit

clrb rs232TxPin2 ;1

© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

Dual UART Virtual Peripheral Implementation AN39

sb rs232Tx2low.6 ;1

setb rs232TxPin2 ;1

test rs232Tx2count ;1 are we sending?

snz ;1

clrb rs232Tx2Flag ;1,22

rs232Receive2

_bank rs232RxBank ;2

 sb rs232RxPin2 ;1 get current rx bit

 clc ;1

 snb rs232RxPin2 ;1

 stc ;1

test rs232Rx2count ;1 currently receiving byte?

sz ;1

jmp :rxbit ;1 if so, jump ahead

mov w,#9 ;1 in case start, ready 9 bits

sc ;1 skip ahead if not start bit

mov rs232Rx2count,w ;1 it is, so renew bit count

mov w,#UARTStDelay2 ;1 ready 1.5 bit periods (50MHz)

mov rs232Rx2divide,w ;1

:rxbit decsz rs232Rx2civide ;1 middle of next bit?

 jmp :rs232RxOut2 ;1

mov w,#UARTDivide2 ;1 yes, ready 1 bit period (50MHz)

mov rs232Rx2divide,w ;1

dec rs232Rx2count ;1 last bit?

sz ;1 if not

rr rs232Rx2byte ;1 then save bit

snz ;1 if so,

setb rs232Rx2Flag ;1,23 then set flag

:rs232RxOut2

UARTOut

;***

;================= PUT YOUR OWN VPs HERE=====================

; Virtual Peripheral:

;

; Input variable(s):

; Output variable(s):

; Variable(s) affected:

; Flag(s) affected:

;***

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread2 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread3 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread4 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

isrThread5 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread6 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread7 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread8 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread9 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread10 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread11 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread12 ; Serviced at ISR rate/16

;---

jmp isrOut ; 7 cycles until mainline program resumes execution

;---

isrThread13 ; Serviced at ISR rate/16

; This thread must reload the isrMultiplex register

_bank Multiplexbank

mov isrMultiplex,#255 ;reload isrMultiplex so isrThread1 will be run on the

; next interrupt.

jmp isrOut ; 7 cycles until mainline program resumes execution

; This thread must reload the isrMultiplex register

; since it is the last one to run in a rotation.

;---

isrOut

;***

; Set Interrupt Rate

;***

isr_end

mov w,#-intperiod ;refresh RTCC on return

;(RTCC = 217 no of instructions executed in the ISR)

retiw ;return from the interrupt

;***

; End of the Interrupt Service Routine

;***

© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

Dual UART Virtual Peripheral Implementation AN39

3.0 Baud Rate Generation and Timing
As an example of calculating the parameters which con-
trol the timing of the Dual UART Virtual Peripheral, con-
sider transmitting data at 57600 baud with four times
oversampling (i.e. a sampling frequency of 230.4 kHz).
Transmission time for 1 bit = 1/57600 seconds
The divide ratio UARTdivide for the above example is the
sampling rate divided by the baud rate and the number of
slots for the Dual UART Virtual Peripheral ISR in the mul-
titasker (i.e. Num).
So the formula for UARTdivide is:
UARTdivide = UARTfs/(UARTbaudrate * Num)

= 230400/(57600 * 4) = 1

Therefore, setting UARTdivide to 1 results in the desired
baud rate. In receive mode, the baud rate is calculated in
the same way, except that a constant called UARTstart-
delay is used to skip over the start bit. This constant is
equal to 1.5 times the baud period. Its purpose is to
ensure that the bits are sampled near the middle of each
pulse. Separate UARTDivide and UARTStDelay con-
stants are used for each UART (e.g. UARTStDelay1 is
used for UART 1, and UARTStDelay2 is used for UART
2).

© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

AN39 Dual UART Virtual Peripheral Implementation

3.1 Circuit Design Procedure
The simplest version of the circuit requires two port pins
for transmit and receive. If hardware handshaking is
used, additional port lines are required. The hardware

interface only requires a driver for converting the voltage
level of the signals. The same concept can be used to
extend and configure two or more independent UARTs.

4.0 Applications
The program is written for a simple UART without hard-
ware handshaking, but it can be modified to include
handshaking.
Because this implementation has two UARTs which can
be configured for independent baud rates, it can be used
in applications communication with two MCUs or periph-
erals operating at different baud rates. The Dual UART
Virtual Peripheral can be modified by placing the transmit
and receive ISRs in different threads, to reduce the ser-
vice time for each thread.

Figure 3-1. Circuit Diagram

Ubicom SX @
 50MHz

RS-232

(M AX-232)

Line Driver

D-Type
 Connector

D-Type
 Connector

RS-232

(M AX-232)
Line Driver

TX1 TX1

TX 2 TX 2

RX1 RX1

RX2 RX2

© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

AN39 Dual UART Virtual Peripheral Implementation

Lit #: AN39-02

